
J Eng Math (2009) 63:213–239
DOI 10.1007/s10665-008-9232-4

The effects of nonsymmetry in a branching flow network

Nick Ovenden · Frank Smith · Guo Xiong Wu

Received: 27 June 2007 / Accepted: 8 April 2008 / Published online: 16 May 2008
© Springer Science+Business Media B.V. 2008

Abstract A planar flow network consisting of successive generations of bifurcating vessels located downstream
from a single mother vessel containing an incident fully developed flow is investigated. The theory and analysis
developed which are for relatively thin vessels apply to small, medium or large networks. Although each successive
bifurcation is in effect from a new mother vessel to two daughters, the networked system splits these into different
types of bifurcation, the middle ones being inertial and the edge ones being viscous–inviscid in view of the wall
conditions. The influences of network shapes, topology and end-pressure differences on the flow ahead of and inside
the network are examined. Distinct local and global forms of upstream influence are active. The effects are especially
marked in terms of non-symmetry, which leads to a global upstream influence, displaces the whole incident flow
and particularly affects the motions near the outermost walls; there the non-symmetrical effects govern the induced
wall shear stress and pressure and the solution dependence is very sensitive because of the realistic incident flow.
Results from lattice-Boltzmann simulations are also described, and comparisons are then made with the theory and
analysis. Pressure and shape control are considered in detail.

Keywords Branching · Flow networks · Lattice-Boltzmann techniques · Upstream influence

1 Introduction

Networks of branching vessels containing fluid flow play important roles in many applications, from plumbing and
underground waterways to biomedical applications concerning physiology. The biomedical applications are in fact
the ones of most interest for the present study. These include, in particular, models of part or even the whole of the
human circulation, as well as the cerebral blood network, and on a more refined scale modelling of the Circle of
Willis, arteriovenous malformations and multi-branching structures such as the Middle Cerebral Artery. See [1–7].
Our motivation then is from biomedical applications concerning networks of vessels.

Previous work on branching or networks includes many analytical, computational and experimental studies,
such as those of [8–20]. Among these are numerous investigations of bifurcations with or without a few further
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214 N. Ovenden et al.

generations of bifurcations following on downstream. Many or most theoretical discussions, however, are on one- or
two-dimensional models and assume some kind of flow symmetry at each branching junction or bifurcation, partly,
if not entirely, for the sake of theoretical or similar progress and partly to claim application to three-dimensional
branching flows. There are also many network studies of various sorts and styles including rational or irrational
treatments. Few or no existing network analyses seem to allow for both inviscid and viscous effects except for [20];
yet both of these effects would seem relevant for the medium to large flow rates or Reynolds numbers that operate
in many biomedical applications.

It is potentially very important also to examine the effects of flow non-symmetry, whether due directly to shape
effects at a bifurcation or indirectly to lack of symmetry in the entire network, and to consider the corresponding
bias that spreads throughout the network. Little effort appears to be reported on this aspect despite its obviously
wider applicability. Other aspects including three-dimensional effects, abrupt one-to-many branching and succes-
sive generations of bifurcations are considered recently by [20] and [21], while further background work is by
[2,4,11,22,23]. Our main concern in the present paper is with motion at medium to large Reynolds numbers in a
network incorporating non-symmetry.

Key questions concern the mode or modes of upstream influence that act within a network, the interaction
between local and global pressure requirements, the role of inertia compared with that of viscous forces, and indeed
the interplay between inviscid and viscous behaviour. Given that lubrication theory as used in some approaches
strictly assumes rather large length scales, much greater than the typical viscous lengths, and that an arteriovenous
malformation and other distinguished networks are comparatively short, there is the issue of what happens for
shortened networks. Questions arise also on how much progress can be made analytically, on whether any size of
network can be handled theoretically, on describing analytically the influence of end-pressures and geometry or
topology on a network, on how to match possibly very different types of flows and vessels present inside a network,
and on whether theory works at realistic Reynolds numbers. How the flow ahead of the network is affected is also
of concern, in terms of upstream shaping [16] and upstream influence [24], as well as mass flux. These issues are
especially interesting for a non-symmetric network.

Concerning our specific interest, since the flow for a large network is very difficult to solve in full by direct
computation, the present contribution starts with use of the theory of interaction involving an inviscid core and thin
viscous wall layers, among several other features, to help improve physical understanding and to create predictions
and comparisons. In fact, we use theory/analysis for Reynolds numbers Re large and then computations at medium
Re, and compare them. The aim is to find the mass-flux–pressure relationship for the network, the induced pressures
and shear stresses at the outermost walls where the flow is at its most sensitive and particularly the non-symmetric
component of the entire motion, in addition to considering the effect of cutting out some vessels downstream.
Complexities arise from the geometry, non-symmetry and vorticity due to the incident motion. The work highlights
the short- and long-scale physical changes which are a common feature for the networks of various sizes that are
studied: an example is sketched in Fig. 1. It is found that the core relations, the jump conditions in pressure and
vorticity arising at almost every bifurcation and the wall-layer equations all play roles in the interactive flows pres-
ent. The theory developed appears to be complete, viscous–inviscid and largely analytical. It not only explains how
a relatively low pressure, for example in one daughter vessel, tends to draw fluid into that daughter, producing a
displacement in the flow ahead and hence a non-symmetry, but also how such non-symmetry can arise from various
other sources within the network. The theory takes the flow to be two-dimensional.

The investigation then is aimed at a large viscous–inviscid network; see Figs. 1 and 2. In terms of the entire
system there are three types of unit to accommodate. The first unit comprises the very first bifurcation; there could
be several first units in a system in practice but here we consider only a single one. Wall-touching units or edge
vessels are the outermost vessels that share one wall with the mother vessel. Internal units or core vessels share
no wall with the mother. So the type of a unit depends on whether at some normal y-location the incident internal
velocity profile u0(y) in the stream-wise (axial) direction is zero or not within the unit: see Fig. 2. For a large
network the internal units are generally the most common, in which u0(y) is nonzero everywhere. Wall-touching
units which have u0(y) being zero at just one edge corresponding to one of the two outer walls are rarer in a general
large network. The first unit is unique in that it has u0(y) zero at both of its edges as they are the outer walls. Each
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Nonsymmetry in a branching flow network 215

Fig. 1 Schematic diagram (not to scale) of the typical branch-
ing network containing successive bifurcations downstream of
an original mother vessel, with a fully developed u = u0(y)
incident motion. The axial length scale ε−1 = δ−1/2. Non-sym-
metry is permitted

Fig. 2 Showing the different types of units present in a multi-
ply-bifurcating system, in particular the first unit (denoted f),
the wall touching ones (denoted w) and the internal ones (all
others unlabelled). Typical parts of the velocity profile are as
seen

unit in the network consists locally of one mother vessel M and two daughters D1, D2, and the whole network is
an assembly of such units joined together through appropriate pressure and mass flux conditions.

There is distinct mechanics at work in the three different types of units. In the mother, as part of a first unit, the
viscous wall layers on both outermost walls play vital roles in both ensuring no slip at the walls, and interacting with
the core flows, leading to possible free interactions in accordance with existing literature. In the daughters, again
as part of a first unit, the viscous roles are likewise vital in terms of the displacement being known, at least up to a
constant, from the core flows. The viscous role of each daughter vessel also forms part of every wall-touching unit,
in contest with the motion in other vessels, including all internal units, which is quasi-inviscid and only satisfies the
tangential-flow condition along dividers or internal walls. This is in addition to the mechanics associated with the
shorter-scale behaviour near the branch junctions, which manifests itself as localised jumps in pressure and velocity
within the major axial length scale of interest.

For the sake of generality the network must be assumed to be non-symmetric as mentioned previously. The
axial length scale involved in the first unit scales with the 1/7th power of the Reynolds number [24] and governs
the non-symmetric upstream influence in the system apart from the global influence afforded by the end-pressure
control. The length scale examined could be enlarged of course but a specifically non-symmetric upstream influence
is absent over such lengths in general.

The flow features are addressed below in non-dimensional form with velocity field (u, v) in respective Cartesian
coordinates (x in the broadly axial direction, y in the direction normal to that), pressure p(x, y, t) and time t . In
the usual manner, the relevant dimensional scalings are a typical flow speed U∗, a representative length L∗ and
the fluid density ρ. The Reynolds number Re = U∗L∗/ν, with ν denoting the kinematic viscosity, and as stated
earlier planar motion is assumed. We define a stream function ψ in the usual manner by u = ψy and v = −ψx

and use it where convenient in different parts of the analysis. For definiteness the incident mother vessel is taken
to have a relatively long upstream portion, yielding incoming fully developed flow in the absence of bifurcations,
although this is readily altered to accommodate a general incoming velocity profile. Separation is largely suppressed
throughout.

We begin in Sect. 2 with the first bifurcation or what is in essence the fundamental system of a 1-to-2 bifurcation
alone, while Sect. 3 builds on that to consider a 1-to-3 or 1-to-4 network, where new matching phenomena arise.
Section 4 then extends this to a larger network, bringing in the responses for internal units in addition to those of
the first unit which is that considered in Sect. 2 and the wall-touching units which are those introduced in Sect. 3.
Effective solution jumps, for example in the induced pressure, enable matching to take place between different parts
or units of networks. The theory assumes small spread angles, i.e., all walls are close to being aligned, and it also
assumes sufficiently smooth divider and other wall shapes. In the work, nonlinear theory is set up first, followed by
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linearized analysis. Lattice-Boltzman computations are described in Sects. 5 and 6 together with comparisons with
the earlier analysis. Section 7 provides further discussion.

The following sections detail the relations between pressure difference and fluxes in the various vessels of the
network, which are built up to satisfy the overall pressure differences imposed on the network. Flux is represented
by a displacement function, conveniently, and the latter also gives the induced velocities in the vessels.

2 The first bifurcation

The first bifurcation is itself equivalent to a simple one-to-two network with prescribed end pressures as well as a
first unit in a wider system. With the total pressure difference and hence the pressure gradient being imposed over
the whole system, strictly we define U∗ here as U∗ = L∗2G∗/(ρν)where G∗ is the pressure gradient imposed over
a long length scale rather than a local pressure gradient, which may be significantly larger. Hence the Reynolds
number Re, based on the typical tube width L∗, is L∗3G∗/(ρ∗ν2).

The orders of magnitude of the different contributions in the Navier–Stokes equations (These equations, together
with the overall pressure differences accross the network, and the given vessel-shape conditions, constitute the full
problem to be addressed of course) then show that the longest axial viscous length scale is O(Re) provided that u, v
and y are O(1) at most. The present study is of length scales somewhat shorter than that of the viscous length scale.

We describe modelling of a planar network of bifurcating tubes as in Fig. 1 starting at x = 0, the general case
of a non-symmetric network being addressed. The quantities used now are non-dimensional, a typical axial speed
induced in the incident mother flow and a typical tube width both being of order unity. The mother flow is taken to
be fully developed motion with no slip at the walls, with stream-function profile ψ0(y) (so u0(y) = dψ0/dy) but
unknown total mass flux. Steady flow is assumed over a long length scale that is nevertheless short compared with
the viscous length Re above, together with zero pressure far upstream in the mother and prescribed pressures at the
downstream ends of the network.

Asymptotic expansions of the flow solutions in the various vessels are proposed here and in later setions and they
are then substituted in the Navier–Stokes equations. The following sub-sections discuss in turn the viscous wall
layers, the core of the motion, the interplay between the end pressures and possible local discontinuities induced in
the flow over the present length scale, and representative flow solutions.

2.1 The viscous wall layers

The upstream-influence length scale axially is long, of O(Re1/7), from [24]. Putting δ = Re−2/7, which is small,
we write x = δ−1/2 X with X of order unity. The thin viscous layer at the lower outer wall near y = 0 then has
thickness of order δ from order-of-magnitude arguments. So y = δ(Y + S(X)), say, and S(X) denotes the scaled
given lower-wall shape, with the flow solution expanding as

[u, ψ, p] =
[
δU, δ2�, δ2 P(X)

]
+ · · · , (1)

the typical mass flux thus being of O(δ2). The scaled wall pressure P is independent of Y because of the normal
momentum balance. In consequence the nonlinear viscous wall-layer equations

U = �Y , V = −�X , (2a)

UUX + V UY = −PX (X)+ UY Y , (2b)

control the wall-layer behaviour in scaled terms. The boundary conditions required, for matching with the core flow
and for no slip at the outer wall, are of the form.

U ∼ λ0 (Y + A(X)+ S(X)) as Y → ∞, (2c)

U = � = 0 at Y = 0, (2d)
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Nonsymmetry in a branching flow network 217

Fig. 3 The one-to-two branching flow or first unit studied in Sect. 2. The mother vessel is M, the daughters are D1 (upper) and D2
(lower) with a divider near y = c0 as shown, and the wall shapes are represented by thicknesses δSn and δTn (n = 0, 1, 2) along y = 0,
c0 or 1. The pressure variations are of order δ2 throughout. Here X is zero at the branch junction

where the O(1) positive constant λ0 stands for the scaled incident wall shear and the function A(X) is unknown.
Apart from the issue of upstream influence, the negative boundary-layer displacement or inviscid slip velocity
effect A(X) can be obtained (to within a factor related to the mass flux) by the core-flow solution valid outside the
wall layer, as shown in the next sub-section. In that case, the viscous wall-layer problem determines the δ2-scaled
lower-wall pressure response P to within a constant. In effect the function A(X) plays the role of a displacement
and a velocity as indicated in (2c), as well as a mass flux in (5) below.

Adjoining the upper wall y = 1 there is a similar layer in which y = 1 − δ
(
Y + + T (X)

)
, where T (X) denotes

the scaled upper-wall shape measured, as is Y +, in an inward direction. The expression (1) applies again but with
ψ − ψ0(1) and with u = δU+ + · · · , and so on, while the governing equations and constraints are in effect as in
(2a)–(2d) except for the requirement

U+ ∼ λ+
0

(
Y + − A(X)+ T (X)

)
as Y + → ∞, (3)

which replaces (2c), the change in sign of the A term arising from the core displacement. Here the positive con-
stant λ+

0 denotes the scaled incident shear at the upper wall. The δ2-scaled upper-wall pressure P+ again is to be
determined.

The controlling equations (2a–d) and (3) in both lower and upper wall layers form a nonlinear system together
with a relation between A(X) and P(X), P+(X) or with A(X) prescribed. If the disturbances produced by the
network pressures and various wall thicknesses present are relatively small, however, then the system becomes
linearized, as discussed later on in this section.

2.2 The core

Suppose here that we have a single 1-to-2 branching, then, as in Fig. 3, with mother M, upper daughter D1 and
lower daughter D2. The mother vessel has walls situated at y = 1 − δT0(X), y = δS0(X), while those of D1
are at y = 1 − δT1(X), y = c0 + δS1(X) and those of D2 are at y = c0 − δT2(X) and y = δS2(X), where
δSn(X), δTn(X) for subscript n = 0, 1, 2 are the wall or divider thickness contributions of O(δ); the subscripts
n = 0, 1, 2 refer in turn to the thicknesses in the mother, upper daughter and the lower daughter vessels, respec-
tively. The total divider thickness in the current case is δ (S1(X)+ T2(X)), and the divider is positioned astride the
level y = c0 with c0 being an O(1) constant lying between zero and unity. Accordingly the shape S(X) in (2c)
is given by S0(X), S2(X) and, similarly, T (X) in (3) is defined by T0(X), T1(X), for negative and positive X in
turn.

The inviscid core within the upper daughter D1 acts mostly as if distinct from that in the lower daughter D2 and
likewise for the viscous lower wall layer, over the present length scales. In the core of M, D1, D2 the pressure p is
of O(δ2), with the stream function ψ and p expanding respectively as
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ψ =
⎧⎨
⎩
ψ0(y)+ δ {A0(X)u0(y)+ f0(y)} + · · · , in M
ψ0(y)+ δ {A1(X)u0(y)+ f1(y)} + · · · , in D1
ψ0(y)+ δ {A2(X)u0(y)+ f2(y)} + · · · , in D2

(4a)

p =
⎧
⎨
⎩
δ2 p0(X, y)+ · · · , in M
δ2 p1(X, y)+ · · · , in D1
δ2 p2(X, y)+ · · · , in D2

(4b)

fn(y) = �nψ0(y) for n = 0, 1, 2, respectively. (4c)

Here, ψ0(y) = λ0
(
y2/2 − y3/3

)
and u0(y) = λ0

(
y − y2

)
, corresponding to the fully developed Poiseuille flow

in the absence of any bifurcation, whereas the constant �n is an unknown associated with the mass flux alteration
which is proportional to fn(y), is of order δ in the core and is included for completeness. More generally,ψ0(y) and
fn(y) could be taken as arbitrary no-slip profiles in y but for definiteness we will keep to the fully developed forms.
Also within (4) a pressure variation of size larger than that shown would be independent of y and unsupportable at
the outer walls, as the subsequent explicit solutions verify. Further, it can be shown that the undeveloped viscous
layers on the internal dividers of the daughters can be taken to have negligible impact on the flow, i.e., they are
passive, implying a tangential-flow condition in D2 on the given divider underside y = c0 −δT2(X). In terms of the
linearisation used, the Blasius viscous thicknesses that grow on the divider are actually a fraction δ1/2 smaller than
the original order δ for X = O(1), essentially adding only 1.7208(δX/u0(c0))

1/2 to S1(X) and T2(X) for positive
X . The typical Blasius thickness here agrees with the traditional estimate of Re−1/2x1/2 given that x is of order
Re1/7. The core flow thus yields the governing equations

u = u0 + δu1 + · · · ,
v = δ3/2v1 + · · · from continuity,
u0∂u1/∂X + v1u′

0 = 0 from the axial momentum balance
u0∂v1/∂X = −∂pn/∂y from the normal momentum balance.

Hence, the velocity correction u1 is given by the O(δ) term written in (4a) and v1 by −(dAn/dX)u0, satisfy-
ing the continuity and axial-momentum equations, while the normal-momentum equation shows that ∂pn/∂y =
u0d2 An/dX2, producing a significant normal pressure gradient. Taking T2(0) as zero without loss of generality
thus yields the classical thin-channel result

A2(X) = T2(X)+ K2, for X > 0 (5)

(since u0(c0) > 0), which determines the function A2(X) to within the additive constant K2. The pressure remains
unknown in D2, and it is likewise unknown in D1 where the subscript 2 is replaced by 1 in the above working
together with −S1(X) replacing T2(X); thus A1(X) = −S1(X) + K1 for X > 0. The effective slip velocities
δλ0 A(X) and −δλ+

0 A(X) at the outer edges of the inviscid core as y → 0, 1 drive the viscous wall layers, which
is where S0,2(X) and T0,1(X) first make their presences felt.

On the other hand, upstream influence is present in the mother tube M occupying X < 0, where the core has

pn(X, y) = P(X)+ d2 An

dX2

∫ y

0
u2

0(s)ds (6)

with n = 0 and P(X) being the scaled lower-wall pressure. The result (6) follows from the normal momentum
balance. So, the upper wall pressure P+ is related to the pressure at the lower wall P by

P+(X) = P(X)+ q
d2 An

dX2 (7)

where the positive constant q is the integral in (6) evaluated at y = 1. Altogether, this yields a free-interaction
behaviour [24] in which, for X large and negative, and with λ0 = λ+ = λ, say,

A0(X) ∼ K0 eκX , where κ = λ5/7 (−6Ai′(0)/q
)3/7

, (8)

with Ai(x) being the Airy function. Here (8) represents an elliptic effect in the sense that the constant K0 depends
on the global flow behaviour downstream whereas the value of κ is fixed and for the incident fully developed motion
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Nonsymmetry in a branching flow network 219

described earlier is 5.18767 . . . for λ = 1. The slip effect A(X) which helps to drive the two viscous wall-layer
responses is identical to A0(X), A2(X) along the lower wall, for X < 0, X > 0 respectively, and A0(X), A1(X)
along the upper wall.

The pressures within the two daughters are not given by the same relations (6) and (7), with n = 1, 2.
In the two daughters for n = 1, 2, by contrast, the displacements A1, A2 are known to within additive constants

from (5) and also the presence of the divider astride y = c0 allows the daughter pressures to be discontinuous there
in the normal direction. So the relations (6) and (7) used to determine the pressure in the mother vessel no longer
apply. Similar relations apply within the daughters but they act to fix the induced pressures on either side of the
divider, thereby predicting the forces acting on the divider once the outer wall pressure is determined.

2.3 The end pressures and local jumps at branching junctions

The end pressures p at certain X -stations upstream or downstream in the vessels are specified in the sense that the
scaled pressure values pn and hence the wall pressure values

P (X−∞) = P+ (X−∞) = 0, P+(X1) = P1, P(X2) = P2, (9)

are imposed, i.e., the constants P1 and P2 are specified. The wall pressure conditions P+ and P (or P−) are here
applied at general finite stations downstream within the daughter vessels in anticipation of a network developing
from those stations, which would be further branch junctions requiring subsequent pressure matching there. See
Sects. 3 and 4. Here the station X−∞ is sufficiently upstream of the branching, and indeed in the present setting is
at minus infinity, while X1, X2 are downstream in the two daughters.

Based on the findings in [6,7,22], initially we might expect local pressure jumps also to be present at the branching
junction, axially from 0− to 0+. The jumps would help accommodate the set pressures upstream and downstream
in (9), with a local change in mass flux of

δu0(c0) [A1(0+)− A0(0−)] ,
where A1(0+), A2(0+) are equal, and at first sight there seems nothing to doubt their presence here. Such abrupt
jumps are believed (hypothesized) to be absent in the current first-unit setting, however, essentially due to the
free interaction in (8) which operates instead and yields a longer upstream effect. Nowhere else within the current
bifurcation or within the larger networks studied subsequently is there such a free interaction. Moreover the free
interaction is able to accommodate a wide range of set pressure differences through a linear response with eκX

alone or a nonlinear response with extra e2κX terms etc. as in [24]. This is in line also with the absence here of any
means to support pressures of O(δ), while the likelihood of significant separation being induced in the lower or
upper viscous wall layer if the abrupt local change in displacement is positive or negative, by contrast with Sects. 3
and 4 below, is another although lesser factor. Hence, the scaled pressures and displacement effects here are taken
as continuous across X = 0. This leaves the constants K0,1,2 equal and the displacement and slip A(X) continuous
at the origin, implying that there is no abrupt change in mass flux there.

In consequence, the end pressures P1, P2 are forced to be functionally related, as in the examples of the next
sub-section. This end-pressure relation is consistent with the longer-scale pressure behaviour. Another consequence
from the absence of pressure variations and jumps of order δ concerns the mean flow alterations in (4), namely the
fn(y) which must all be equal in the current bifurcation, so that

f1(y) = f2(y) = f0(y) = f (y), (10)

say. Thus there is little change in the mass flux and vorticity due to the current pressure differences. For a 1-to-2
network alone the fn(y) can further be equated to zero without loss of generality, whereas if the current bifurcation
is just the first bifurcation in a larger system then the common value of the profiles fn(y) above remains unknown
at this stage. We set f (y)/u0(y) = g(y) for convenience.
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2.4 Flow solutions

For small effective displacements ĉ(X), which represents (A(X)+ S(X)) in (2c) and (−A(X)+ T (X)) in (3), a
linearized form applies instead of (2a–2b) as mentioned earlier. The quantities U − λ0Y (= û say), the pressure
and so on are all small then, and by taking a Fourier transform in X defined for a function g(X) as

g f (ω) =
∫ ∞

−∞
g(X) e−iωX dX,

the following lower-wall properties are obtained

τ̂ f (ω) = ∂ û

∂Y

∣∣
Y=0 = 3Ai(0)(iωλ)1/3λĉ f (ω), p̂ f (ω) = α(iω)−1/3ĉ f (ω). (11)

Here, we take again λ0, λ+
0 equal to λ for convenience, while τ̂ is the wall shear perturbation at the lower wall, and

the constant α = 3Ai′(0)λ5/3 is negative. An exactly analogous solution holds in the upper layer.
Ahead of the branching, (11) and its upper-wall analogue are coupled through the relation implied by (7), formally

P+ f
(ω) = P f (ω)− qω2 A f (ω) (12)

and so the formal solution for the displacement is

A f (ω) = α

(
S f (X)− T f (X)

)

(q(iω)7/3 − 2α)
. (13)

The pole arising in (13), where the denominator vanishes, is responsible directly for the upstream influence, in
which A(X) takes the form in (8) for all X < 0 if the shape effects S(X), T (X) or more generally the nonsymmetric
part of S(X) − T (X) is zero in X < 0. However, Eq. (7) does not hold in X > 0. Therefore (12) and (13) apply
only for a half-range sense. The references [25] and [26] used that feature to apply a Wiener–Hopf technique for
the solution. Here we use a different approach as it is more readily applicable to larger networks.

After the branching, X > 0 and the second expression in (11) gives the wall-pressure transform solution directly
with ĉ(X) replaced by (A(X)+ S(X)) along the lower wall and by (−A(X)+ T (X)) along the upper wall. Thus,
on inversion we have

P = α

�(1/3)

∫ X

−∞
[A(s)+ S(s)] (X − s)−2/3ds, (14a)

P+ = α

�(1/3)

∫ X

−∞
[−A(s)+ T (s)] (X − s)−2/3ds, (14b)

while formally from the first expression in (11) the wall shear stress perturbation is predicted by the finite-part result

τ̂ (X) = −√
3Ai(0)λ4/3 α

2π

∫ X

−∞
[A(s)+ S(s)] (X − s)−4/3ds (14c)

at the lower wall and similarly at the upper wall.
A particular case of interest is that of negligible wall-shape effects (S = T = 0 throughout) but with the flow

being driven by differences in the end pressures or by various divider placements, i.e., c0. Then A(X) = K0 eκX in
M, A(X) is some constant K1 in D1, and A(X) is K2 in D2. On the other hand, continuity across X = 0 requires
K0 = K1 = K2. Hence,

A(X) =
⎧⎨
⎩

K0 eκX in M
K0 in D1
K0 in D2.

(15)

From (14a,b) the wall pressure solutions are therefore

P(X) = −P+(X) =
{
ακ−1/3 K0 eκX for X < 0,

3
α

�(1/3)
κK0 eκX

∫ X
−∞ u1/3 e−κu du for X > 0. (16)
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The results agree with those of [26] after a technical error is corrected in the latter work, incidentally. The end
conditions then require the second and third constraints of (9) to hold. So, as anticipated, the end pressures over
the present length scale are inter-related. Indeed, if the end stations X1, X2 are equal, then P1, P2 are forced to be
equal but opposite in value as seen in [7]. It is interesting also that the solution above appears to be independent of
the divider positioning c0.

Solution properties for the pressure-driven and a variety of shape-driven cases are presented in Fig. 4(a–c). In
every case the downstream pressure is imposed as −1/3 with κX1 = 4. The presence of induced upstream influence
in exponential form is clear throughout, with Fig. 4(a, b) showing the effective shape-and-displacement function
ĉ(X), the scaled pressure and the wall-shear-stress perturbation induced at an outer wall when the only shape effects
acting are in the daughters as represented by the parameter b1. The three cases given in Fig. 4(a) in particular high-
light the shaping effect in provoking quite distinct behaviour ahead of the bifurcation. The controlling influence
of the downstream pressure value is also clear in the case of b1 = 0 in the sense that a sign reversal of pressure
simply changes the sign of the entire flow result upstream. The solutions presented also include upstream shaping
effects in Fig. 4(c), where the upstream wall shaping is proportional to the parameter C1. The results altogether
indicate that in general a rise and then fall in ĉ(X)make the pressure P fall (favourable pressure gradient) and then
rise (adverse), and vice versa, as is physically sensible. In Fig. 4(b) for instance the pressure response upstream
produces an adverse pressure gradient, giving a very pronounced axial decrease in wall shear stress along with the
displacement −A(X) increasing, meaning that the effective outer slip A(X) for the lower-wall layer is decreasing.
The results also indicate that the displacement ahead of the branch junction can be an upward or downward trend
depending on the vessel shapes as well as the downstream pressures and this dependence is quite a sensitive one.
A contraction in the width of any vessel involved broadly leads to a favourable pressure gradient and increasing
wall shear locally, and expansion to an adverse pressure gradient with decreasing wall shear, as expected, but the
global upstream influence and the end pressures can accentuate or counteract those trends.

To summarize the results of Sect. 2, the pressure-driven case leads to the result (15) for the induced displacement
function which also gives the effect on mass flux. The mechanism of upstream influence is clear in terms of the
exponential contribution in (15) showing the influence on the motion in the mother vessel. The displacement (15)
acts to determine the induced pressure via the response in the viscous outer-wall layers, yielding (16), while the
outer-wall shear stress perturbations stem from (14c). The shear stress on the thin divider here and in the other
networks throughout the paper is given by the classical Blasius form and is much larger than the outer-wall shear
stresses. The shape-driven cases follow a similar pattern based on the flow solutions in (11)–(14c) above.

3 The second or third bifurcation

To enlarge the system to incorporate a further bifurcation next, we may suppose that there is a 1-to-3 or -4 network,
exactly as in the network of Sect. 2 but succeeded by at least one wall-touching unit. The notation is such that it
allows generalisation, taking account of necessary relabelling from daughter to granddaughter vessel and so on; see
Fig. 5. Then an extra feature appears in the following.

3.1 The core surrounding the next junction

Again attention can be restricted initially to a lower part, consisting now of a daughter flow (for d2< y< d1
with d2 being zero and d1< 1) described essentially as in (4), (5) and two granddaughters for d2<y<d0 and
d0<y<d1 which begin at X = X0> 0. These as a unit can be regarded anew as a mother M and daughters D1, D2.
The lower of these granddaughters has a motion also described essentially by (4), (5). The upper one, however,
which is vessel D1 now, must usually suffer higher typical pressure variations of O(δ) such that in its core

ψ = ψ0(y)+ δψn∗ + · · · , (17a)

where
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Fig. 4 One-to-two bifurcating flows for wall shapes such that S1 = C1/(1+C2 X2) in the mother for X < 0 and the daughter gap-width
factor S2 +T2 is b1 X in X > 0. (a) For C1 = 0, lower-wall pressure P(κX) (solid lines) and ĉ(κX) (dashed lines) for the pressure-driven
case of (i) b1 = 0 and the shape-driven cases (ii) b1 = −1 and (iii) b1 = +1. (b) Wall-shear-stress perturbation and pressure for the
shape driven case where b1 = 1, again for C1 = 0. (c) As (a) but for the upstream shape-driven case where b1 = 1 but C1 = −2,
C2 = κ2
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Fig. 5 For a one-to-three or one-to-four system as addressed in Sect. 3, this shows a typical wall-touching unit. Locally, the mother
vessel is M, the daughters are D1 and D2, but the incident velocity profile u0(y) is positive except at y = 0. The wall shapes are given
by the thicknesses δSn and δTn (n = 0, 1, 2) along y = d2, d0, d1 as seen from bottom to top. Here d2 = 0, while X = X0 at the
bifurcation. The pressure variations are of O(δ2) within M and D2, but of O(δ) within D1

ψn = {Dn(X, y)+ gn(y)} u0(y),

p = δpn∗ + · · · , with n = 1.
(17b)

where d0 − δT2(X) and d0 + δS1(X) are now the underside and topside, respectively, of the divider between these
two granddaughters. The additional flux profile g1(y)u0(y) = f1(y) is arbitrary at this stage but g1(d0) is zero
without loss of generality. From substitution in the Navier–Stokes equations and from the tangential flow condition
at the topside y = d0+, we have

D1(X, y) = −p1∗(X)
∫ y

d0

u−2
0 (s)ds − S1(X)+ γ1, (18)

compare with (4), (5) and (6). Here ψ = ψ0(d0)+ δγ1u0(d0) is constant along the topside of the divider, i.e., the
lower wall of vessel 1 here, to two orders of working. The δ-scaled pressure p∗ which is independent of y and
the flux constant γ1 are unknown. The tangential flow condition at the opposite side or upper wall d1 − δT1(X)
of this vessel requires ψ constant, ψ0(d1)+ δ (�1 + g1(d1)) u0(d1) say, requiring D1(X, d1) to equal T1 + �1 for
some unknown constant �1, where d1 and �1 can be identified with the quantities c0 and K0 + g(c0) − g1(c0),
respectively, in Sect. 2. Hence, with σ1 standing for γ1 − �1, the result

p1∗(X)
∫ d1

d0

u−2
0 (y)dy = σ1 − {S1(X)+ T1(X)} , (19)

provides the pressure–thickness relationship within this vessel. The dependence on the axial change in scaled-gap
thickness through the factor S1 +T1 is noted and contrasts with the nonsymmetric contribution S−T in (13) holding
upstream of the first bifurcation studied in the previous section. The inviscid thin-layer property (19) makes good
physical sense as a decreasing gap width forces the axial velocity to increase to conserve mass and so the pressure
must decrease in view of the momentum balance. Again axial continuity concerning g1 is considered in the next
sub-section. Finally here the viscous layers on the dividers are stronger than those on the outer walls in the sense
that the former have typical inertial and viscous forces of order unity, while the typical forces within the outer wall
layers are significantly smaller, making the outer layers more sensitive, and this aspect accounts for the tangential
flow requirements being relevant as used in (17)–(19).

The extra feature of jumps usually occurring in the flow solution must now be accommodated.

3.2 The local jumps at the branching junction

The new solution jumps act (over the present length scale) in the pressure across the entrance of each of the grand-
daughters from X0− to X0+, given that u0 is nonzero at the inner divider wall astride d0 as well as d1. The active
jumps here are smoothed out on a shorter axial scale by an O(1) Euler region in X − X0, similar to those encountered
analytically and numerically in the [22] study and yielding overall another type of ellipticity through that region in
which the linearised Euler equations hold as inertial forces dominate there.
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Given that the local dynamics are predominantly inviscid it is desirable to follow a streamline from just upstream
to just downstream of the typical jump region, first from vessel 0 (daughter) to vessel 1 (upper granddaughter). The
corresponding change δy∗ in the y position is described by

y∗ = (ψ0∗ − ψ1∗)

u0
at any y, (20)

where the right-hand terms are evaluated at X0− or X0+ as appropriate, ψ1∗ being the function in (17a) which
applies for X > X0 and ψ0∗ being the O(δ) contribution in (4) with A now given by T0 + �0 for X < X0; the
constant �0 identifies with K2 in (5) and T0 here is the old T2 of Sect. 2. Conservation of the pressure head, the
Bernoulli quantity p + u2/2, along the streamline is then found to require that

u0u0∗ + p0∗ = u0u1∗ + p1∗ + (ψ0∗ − ψ1∗) u′
0(y), (21)

again for all d0 < y < d1. Here u1∗ = ∂ψ1∗
∂y while p1∗ is given by (17b) but from the previous section u0∗ is simply

(T0 +�0)u′
0 + f ′

0(y) and p0∗ is identically zero. Substitution in (21) and further manipulation in which the pressure
effects cancel out therefore yields

g1(y) = g0(y)− B1, (22)

relating g1 back to g0 and hence to g. In addition the constant B1 can be seen to be g0(d0) in this vessel. The
main point, however, is that the pressure jump is admissible, as the incident velocity is nonzero at all y heights of
that upper granddaughter, allowing the Bernoulli property to be maintained along each streamline without a large
separation taking place. Overall mass conservation for the same daughter–granddaughter combination also leads to
the result

(T0(X0)+ �0) = −p1∗ (X0+)
∫ d1

d0

u−2
0 dy + γ1 − B1, (23)

from (18) and Sect. 2, along with �1 = �0 + B1.
Similarly a solution jump is admissible from vessel 0 to vessel 2, the lower granddaughter, although of a different

form. It imposes a condition on the δ2-scaled wall pressures near y = 0 just ahead of and behind the jump, namely
[

P0 + λ2 A2
0/2

]
(X0−) =

[
P2 + λ2 A2

2/2
]
(X0+), (24)

while keeping ψ2∗ as A2u0(y) + f (y), given that g2 = g. Mass conservation is automatically satisfied here. The
avoidance of mass loss on the other hand relative to vessel 1 at the divider astride d0 imposes the constraint

γ1 = �2 + g0(d0), (25)

where A is T2(X)+ �2 in the lower granddaughter. The constraint (25) follows from making use of (17) and (18)
in the combined mass conservation with the upper granddaughter.

Also useful here is the relation (19) evaluated at X0+ which gives

p1∗(X0+)
∫ d1

d0

u−2
0 dy = σ1 − T1(X0) (26)

since S1 = 0 at X0, and finally the scaled downstream pressure in

p1∗ (X1−)
∫ d1

d0

u−2
0 dy = σ1 − {S1 (X1−)+ T1 (X1−)} (27)

which is regarded as imposed at a prescribed X1 station with X1 > X0.
In general the end pressures and flux constant �0 help control the flow solution in a wall-touching unit through

(23)–(28), for given vessel shapes. Thus A0 is given by T0 + �0, while the end pressure condition (27) determines
the scaled mass flux σ1 in the particular vessel of concern, following which the junction pressure p1∗(X0+) is
determined by (26). So γ1 stems from (23) and then �2 from (25), which yields the solution A2 = T2 + �2. This
determination of �2 allows the analysis to move on to a next wall-touching unit if there is one downstream. With
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A0, A2 being found as has just been described the wall-layer solution gives us P0 and then P2, taking account
of the jump in (24), a jump which is negligible in the linearized case. Broadly, the influence of the downstream
pressures holding inside the innermost vessels spreads upstream via the inviscid thin-layer property (19) whereas the
outermost downstream pressures (and outer wall shapes S0, S2) have effect through the viscous wall-layer response.

The extra feature that an axial jump in displacement can occur across a granddaughter entrance from X0− to X0+
is caused by the presence of at least one inner vessel (an inner granddaughter) that does not share any containing
wall with the mother vessel. The jump thereby becomes achievable and relevant, as a contrast to the setting in the
previous section where one of the containing walls is always shared. In fact, the means to support higher pressures,
of O(δ), than before exists simply because of the distinct geometry here compared with that considered in the pre-
vious section. The reason we feel that a jump is not called for at the first bifurcation is predominantly due to a free
interaction operating instead and producing a longer scale effect there, and only there, as we mentioned. It might
also be argued that one or other of the lower and upper walls would then be subjected to an adverse pressure gradient
in the downstream portion of its Euler region and this would cause a different large-scale separated flow structure to
apply; thus if A1(0+) > A0(0−) the abrupt local acceleration of the lower-wall layer would be acceptable within
the overall model but the corresponding deceleration of the upper wall layer not, and similarly if A1(0+) < A0(0−).
It is a moot point, but in any case no abrupt change in local mass flux occurs at the first bifurcation.

The present solution jump at the second or third bifurcation, accompanied by a change in vorticity as in (22)
across the daughter entrance GD1 but not across GD2, also helps to accommodate the set pressures upstream and
downstream which are imposed in similar fashion to those in (9) for the mother and each of the three or four
downstream vessels here [7,22]. At the outer walls in particular, where the incident velocity is close to zero, the
viscous layers of (1)–(3) allow the Bernoulli quantity p + u2/2, scaled as P + U 2/2, to be conserved as required
along each local inviscid streamline by means of a scaled pressure jump. This jump in the case of small thicknesses
is λ2(�2

0 − �2
2)/2, from (24), and in keeping with the analysis in Sect. 2.4 as discussed below. The local wall-layer

behaviour is in essence that described further in [22]. Strictly all the jumps here are subject to the restriction that at
the lower (upper) wall A (−A) should increase abruptly to provide a favourable effect.

3.3 The repercussions

Extending the above, in the 1-to-4 case as in Fig. 5 similar considerations apply to an upper part say, comprising a
daughter flow and two granddaughters which begin at another station X = X0 > 0. The discontinuities on the X
scale associated with the pressure jumps are smoothed out over a shorter axial scale by an Euler region of length
O(1) in x as studied in [7,22,23] and mentioned earlier. The Euler region provides a direct communication between
the two granddaughters and the daughter immediately ahead.

The property of the pressure and displacement being in general discontinuous across X = X0, or the flux con-
stants �0, �2 being unequal, permits adjustment of the constants in order to allow the inner granddaughter pressure
to satisfy any downstream pressure condition of the form in (9) or (19). A like property holds for the upper daughter
D1 by means of flux constants there.

A linearized analysis now yields merely small discontinuities in displacement and hence in pressure. As a result
of the above it is found that a jump is also induced in the effective A(X) function here which although still similar
to (5)ff now generally has

A(X) =

⎧⎪⎪⎨
⎪⎪⎩

K2 eκX ,

T0(X)+ K2,

(discontinuity),
T2(X)+ �2.

(28)

The result (28) refers to mother, daughter and granddaughter vessels, unlike (15), which is for a mother and two
daughters. We recall that K2 = �0. The discontinuous form (28) now drives the viscous wall-layer response by
means of the constraint (2c). The displacement constants K2, �2 in (28) are controlled not only by the outermost
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Fig. 6 (a) A specific
one-to-four network
comprising M, D1, D2 and
grandaughter GD1 to GD4
from top to bottom as
shown. Bifurcations are at
X = 0, a, b, the
downstream ends are all at
X = c, and the motion is
subject to end pressure
differences δ2π1, δπ2, δπ3,
δ2π4 from top to bottom.
(b) Two solution examples
with negligible thickness
effects, giving ĉ (dotted
lines), P (solid lines) and
opposite signed �0 values
illustrating quite different
non-symmetrical responses
upstream

(a)
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(lower granddaughter) imposed pressure downstream but also by the inner (upper) granddaughter pressure imposed
downstream.

For the specific 1-to-4 network sketched in Fig. 6(a) there are two wall-touching units and one first unit. If
wall shaping can be neglected the network is pressure-driven by downstream pressures δ2π1, δπ2, δπ3 and δ2π4

imposed at the station X = c in granddaughters GD1, GD2, GD3, GD4, as shown, while the dividers start at
(X, y) = (0, β) (M bifurcating to D1, D2), (a, γ ) (D1 to GD1, GD2) (b, α) (D2 to GD3, GD4). Here 0< a< b< c
and 0 < α < β < γ < 1. Wall-shape effects are negligible. The wall-touching unit that comprises D2, GD3, GD4
yields from (26) and (27) σ1 = π3 I3 and a junction pressure p1∗(X0+) in GD3 equal to π3 where I3 is the integral
in (27) with limits (α, β). Hence this unit has its γ1 = �0 + σ1 + g0(d0) and its �2 = γ1 − g0(d0), leaving A0 as
�0 but A2 as �0 + σ1. The lower-wall layer consequently is driven by

A(X) =
⎧⎨
⎩
�0 eκX for X < 0
�0 for 0 < X < b
�0 + π3 I3 for b < X < c

(29)

The lower-wall pressure P is then given by (14a) with S = 0, and so the condition P(c) = π4 fixes the flux
constant �0. Similar reasoning applies to the wall-touching unit that consists of D1, GD1, GD2 and, accordingly,
the upper wall layer sees

A(X) =
⎧⎨
⎩
�0 eκX for X < 0
�0 for 0 < X < a
�0 + π2 I2 for a < X < c

(30)

in contrast with (29) and, of course, is driven by −A(X) rather than A(X). Here I2 is the integral in (27) with limits
(β, γ ). The incident profile alteration g(y) is seen to have no influence on (29) and (30) despite the induced vorticity
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jumps. The pressure P+(X) follows from (14b) with T = 0, and then the requirement P+(c) = π1 confirms that
(as in the previous section) the outermost downstream pressures must be related. The formula (14c) gives the outer
wall shear stress distributions.

For the corresponding shape-driven case suppose the gap-width reductions downstream are δh1, δh2, δh3 and
δ2h4 in GD1 − 4, again from top to bottom, where each h stands for S + T . The negative displacement acting at
the lower wall is then

A(X) =
⎧⎨
⎩
�0 eκX for X < 0
T2(X)+ �0 for 0 < X < b
T4(X)+ �0 − H3 + h3 for b < X < c

(31)

and a similar form applies at the upper wall. Here H3 = S3(b)+ T3(b) is the gap-width reduction at the entrance to
the vessel GD3 and, as T3(b) = 0 at the bifurcation, then H3 = S3(b). The steps leading to the expressions in (31)
follow directly from the argument associated with (28). The jump in A(X) at the station X = b is again apparent.
The wall-layer properties are then given by (14a–c). Clearly the two parts of the network that are generated on either
side of the very first divider can be treated separately, both here and in larger networks.

The solutions in Fig. 6(b) are for the pressure-driven case and show the scaled pressure induced at an outer wall
for the specific 1-to-4 network of Fig. 6(a) with negligible wall thickness effects. Clearly for a 1-to-3 system the
number of branching junctions as seen from an outermost wall is 1 or 2, whereas for a 1-to-4 system the number can
be 1, 2 or 3 and an internal unit as in the following section might be produced. Larger networks to which we shall
come soon can involve not only more branching junctions as seen from an outermost wall but also more branching
junctions unseen from that wall, as in Fig. 1, for example. In the current results again a contraction of an outer tube
width say broadly leads to a favourable pressure gradient and increasing wall shear there but the discontinuities due
to the branching junctions along with upstream influence and end pressures can provoke an opposite effect. The
combined behaviour affects the non-symmetry substantially, as the results here illustrate, switching the incident
flow from side to side through the displacement effect rather than altering the total mass flux.

In summary, Sect. 3 has shown that for a pressure-driven small network leading to three or four granddaughter
vessels the effects on the induced displacement A (and hence mass flux) at the outermost walls have the form (29) at
the lower wall and (30) at the upper wall. Thus, after the exponential upstream influence in the mother each daughter
flow has an interval in which A is constant, then a jump in A at the second branching (to two granddaughters),
and then downstream another interval of constant A. Given such a displacement the outermost wall pressures and
shear stresses respond according to the results in (14a–c). The corresponding flow in the granddaughters is given by
(17)–(19) subject to the jumps in the solution explained in Sect. 3.2. For a shape-driven small network (31) holds
and similar comments and interpretations apply.

4 More generations and a general network

To accommodate a third, fourth or any later bifurcation here, we suppose a network extending from 1 to more than
4 vessels, say a 1-to-N network. Again, we first consider its lower part, bearing in mind that the inner walls of the
network are capable of sustaining pressures higher than those typical at the outer walls.

4.1 The core, and the local jumps at junctions

Yet another new feature enters as the new generation of vessels implied in such a network must contain some inner
bifurcations which have nonzero incident velocity throughout. These lead to the so-called internal units, which
provoke the higher O(δ) pressures and corresponding solution jumps all the way across in y as well as for long
distances axially upstream and downstream, while outermost bifurcations continue the earlier established trends of
the wall-touching units and the first unit.
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Fig. 7 The representative internal unit inside a larger network, studied in Sect. 4; here the incident velocity profile u0(y) is positive
(non-zero) throughout. The local mother is M, while the daughters are D1, D2 as shown. Again the wall shapes are given by thicknesses
δSn and δTn for n = 0, 1, 2 along y = e2 (lower wall), y = e0 (the divider) and y = e1 (upper wall). Also X is labelled X0 at the
bifurcation and X1 and X2 at the downstream ends of D1 and D2, respectively. The pressure variations are of O(δ) throughout

For an internal unit, locally M, D1, D2 say as drawn in Fig. 7, the expressions in (17)–(19) apply exactly albeit
with dn replaced by constants en now where 0 < en < 1, for n = 0, 1, 2. The functions gn(y) in (17a) for each
vessel now are unequal in general, with g0(e2), g1(e0), g2(e2) being zero, while

Dn(X, y) = −pn∗(X)
∫ y

eB

u−2
0 (s)ds − Sn(X)+ γn, (32)

where eB denotes the minimum (lower wall) y-value inside each vessel. Furthermore the jump analysis in (20)–(23)
remains valid but with the new feature that it now applies to the motion from M to both of the D1, D2 vessels.

The solution procedure for given end pressures pn∗(Xn−)with n = 1, 2 in D1, D2 is as follows, for each internal
unit. The flux constants σn are fixed individually by (27) and then the two junction pressures pn∗(X0+) by (26),
suitably modified for the current unit. So next the flux γ0 −�0 in M stems from σ1 + σ2 as vorticity effects cancel.
Note that here, the flux balances require �1 = �0 + g0(e0), γ2 = γ0 and �2 = γ1 − g0(e0). Thus, the relation

p0∗(X0−)I0 − p1∗(X0+)I1 = (γ0 − �0)− σ1 − S0(X0), (33)

obtained by making use of (32), serves to determine the junction pressure p0∗(X0−) in M. The pressure throughout
the upstream part M of the unit is then given by the counterpart of (19), again using the relation (32), in the form

pn∗(X)In = σn − {Sn(X)+ Tn(X)} , (34)

with n = 0. The term In here is the integral of u−2
0 (y) in y right across the vessel as in the previous section. The

determination of the pressure in M in particular allows the analysis to move on to the next internal unit if there is
one upstream.

As in Sect. 3, vorticity-correction effects adjust at each bifurcation, such that here g0, g1 and g2 are given by
g(y)−g(eB), and likewise onward into subsequent generations. They do not affect the main laws dictating pressure,
however.

4.2 Solutions

The outer wall layers respond to the effective displacement or slip velocity A(X) or −A(X) produced by the core as
mentioned earlier. To determine the influence of all the internal units present in a large network on that slip velocity
requires tracking upstream from the most downstream internal unit and then fitting the most upstream unit thereby
reached into the pattern of the wall-touching units of the previous section.

The prime example again is the pressure-driven case, but for the general setting of N final-generation vessels
now. We suppose that the imposed pressures downstream are δ2π1, δπ2, . . . , δπN−1, δ2πN from top to bottom,
and that the first bifurcation at X = 0 corresponds to the δ-scaled pressures (πN1−1, πN1) on either side of the
divider, the first wall-touching unit to (πN2−1, πN2) with a bifurcation at X = b1, the second wall-touching unit to
(πN3−1, πN3) with a bifurcation at X = b2, and so on until the last (πN−2, πN−1) with a bifurcation at X = bm
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say. Here N1 and so on lie between 3 and N − 1. All the internal units are further inside the network of course. The
lower-wall flow is therefore controlled by the slip

A(X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�0 eκX for X < 0,
�0 for 0 < X < b1,
�0 + ∑N2−1

j=N1
π j I j for b1 < X < b2,

�0 + ∑N3−1
j=N1

π j I j for b2 < X < b3,
. . .

�0 + ∑N−1
j=N1

π j I j for bm−1 < X < bm ,

(35)

from (33), (34) applied to the network along with (29). Each I j is the integral of u−2
0 (y) across the final-generation

vessel with end pressure π j . The multiple jumps or discontinuities in A(X) at the X -stations b1 to bm are clear,
indicating the importance of the relative positioning of the branch junctions as well as the individual vessel thick-
nesses and pressures downstream. A similar formula holds at the upper wall. The ensuing outer-wall pressures and
shear stresses may then be deduced as in (14), it being apparent that near the lower wall S + A rather than some
S − T acts as an effective gap-width factor in the outermost vessel there and similarly T − A acts near the upper
wall.

The second specific example is the shape-driven case. We take the gap-width reductions downstream to be
δh1, δh2, . . . , δhN−1, δ2hN from top to bottom, and the first bifurcation at X = 0 has gap-widths (hN1−1, hN1)

downstream on either side of the divider, the first wall-touching unit has (hN2−1, hN2) with a bifurcation at
X = b1, the second wall-touching unit has (hN3−1, hN3) with a bifurcation at X = b2, and so on until the last
(hN−1, hN ) with a bifurcation at X = bm say. The negative displacement for the lower-wall viscous flow is
then

A(X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�0 eκX for X < 0,
T2(X)+ �0 for 0 < X < b1,
T4(X)+ �0 − H1 + ∑N2−1

j=N1
h j for b1 < X < b2,

T6(X)+ �0 − H1 − H2 + ∑N3−1
N1

h j for b2 < X < b3,
. . .

T2m(X)+ �0 − ∑m−1
i=1 Hi + ∑N

j=N1
h j for bm−1 < X < bm ,

(36)

where H1 is now the gap-width reduction at the wall-touching unit from which all the vessels with subscript N1

to N2 − 1 emanate downstream, and so on across the network. The functions T2(X) and so on again give the
successive divider shapes. A similar form holds for the upper wall. The multiple jumps or discontinuities in A(X)
at the X -stations b1 to bm are again apparent, re-indicating the importance of the relative positioning of the branch
junctions but also now certain vessel gap-widths and their changes downstream. The summations in (36) show how
different sections of the total downstream area affect the displacement throughout, coupled with the vessel areas at
the wall-touching units. An expansion of total vessel area over the generations is seen to provoke a reduction in the
A-effect at each step.

Results are presented in Figs. 8(a–d) and 9. These show the induced outer wall pressures P and the displacement-
shape combinations C in Figs. 8(a–d) for several different cases of larger networks, along with an example in
Fig. 9(a, b) of the inner-vessel pressures that can develop ahead of given downstream end-pressure distributions.
Figure 8(a–c) has five bifurcations as seen from the outer wall while Fig. 8(d) is for ten. In each of the cases in
Fig. 8(c, d) the network provokes a substantial upstream response with �0 having a large magnitude, as do the P
and C responses. The jump effects at each active wall-touching bifurcation then appear relatively small. In Figs.
9(a, b) the end pressures are set in the vessels marked 1–8 and those in the other vessels associated with that section
of the network, i.e., 9–15, are unknown at the start. As expected physically, negative end-pressures tend to suck
fluid away from the outermost walls towards the middle vessels, generating positive displacement, and vice versa
for positive end-pressures. The inner pressures provoked are of greater magnitude than those at the outer walls, of
course, but generally decrease with increasing distance away from the downstream distribution as seen in the cases
of Fig. 9(a, b) because of the integral effect I j , which represents an inertial response wherein the no-slip incident
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Fig. 8 Properties of larger networks. Solutions shown are for P (solid lines) and C (dashed lines) for four specific cases. The successive
wall-touching gap-width factors S + T here are an + bn X within the appropriate intervals of X . (a–c) Solutions for 5 bifurcations as
seen at the outer wall. Here b1−5 = 0 in (a), b1−5 = 1 in (b) and b1−5 = −1 in (c), while a1−5 = 0, 2, 0.5,−0.5, 0.5 apart from
the additional �0 factor throughout, and the end station is at κX = 20. (d) As (a) but with 10 bifurcations as seen from the outer wall;
b1−10 = −1; a1−10 = 0, 2, 0.5,−0.5, 0.5, 0, 2, 0.5,−0.5, 0.5 except for �0; the end station is at κX = 30

velocity profile plays a significant role; it is also exactly in keeping with the scalings described at the start of this
section. On the other hand (35) shows that the I j integral effect can produce an exaggerated influence from the
outermost vessels downstream since those vessels have u0 being relatively small, implying in the limit an over-riding
effect if one such vessel is especially close to the outer wall.

Certain other limiting cases are also worth mentioning here. Large values of N corresponding to many generations
in the network make each sectional contribution to A in (35) approach the novel vertically integrated form
∫ yT

yB

π̂(y)ρ̂(y)u−2
0 (y)dy (37)

Here π̂(y) is the imposed end-pressure distribution, while the effective density function ρ̂(y) denotes the relative
width of the end vessels in the vertical y-direction, with y increasing from yB to yT in the particular section. The
trend towards (37) can be seen in the results of Fig. 9(b). Comparatively rapid successive bifurcations tend to reduce
the differences between X = b1, X = b2 and so on, drawing the branch junctions together horizontally. This mostly
makes the expression for the slip A(X) jump straight from the value �0 in (35) to its final form

�0 +
N−1∑
j=N1

π j I j , for X > b1, (38)

implying that all the end-pressure values then play a role sooner in the spatial sense. The configuration then
models abrupt multiple branching of the kind studied by [7] but with allowance here for the important effects of
nonsymmetry. Again the results in the figures indicate a tendency towards (38) applying if the spatial frequency of
the bifurcations is enhanced.
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Fig. 9 Properties of larger
networks. The successive
wall-touching gap-width
factors S + T here are
an + bn X within the
appropriate intervals of X .
For an = 0, bn = 0 a
specific pressure-driven
network is shown in (a) and
the development of the
pressures in its internal
vessels 1–15 is presented in
(b) for two particular scaled
end-pressure distributions
as indicated: Case 1 (solid
circles) has 1, . . . , 1, 8 and
Case 2 (triangles) has
sin(2πy) where the y-range
is from 0.2 to 0.6
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The summary of the main results of Sect. 4 is again expressed most clearly perhaps in terms of the pressure-driven
case first. There the positive or negative displacement produced near the outer walls has the form (35) comprising
exponential upstream influence in the mother vessel followed by intervals of uniform displacement between the
successive branch junctions. The magnitude and the sign of the discontinuity at each junction depend on the pres-
sures imposed downstream and on integral properties of the incident velocity profile as shown in (35). The effect
on outer-wall pressures and shear stresses is then given by (14). Second, the shape-driven network invokes a similar
response in (36). The results (32)–(34) apply to all of the more internal vessels of the core.

5 Comparison with direct simulations using lattice-Boltzmann techniques

In this section, we present some results obtained using lattice-Boltzmann methods to validate the analytical theory
developed thus far in the paper. In recent years, lattice-Boltzmann methods have demonstrated themselves to be
an accurate and useful numerical method for simulating fluid flows through and around complex geometries. No
details of the lattice-Boltzmann method are provided here, but there is a wide literature on the techniques [27–29].
Here, an exactly incompressible lattice-Boltzmann equation scheme is used [30] with the BGK approximation for
the collision operator [31]. No slip conditions at the wall are imposed using a standard bounce-back approach [29]
and pressure conditions to drive the flow are imposed as in [32].

5.1 Comparison of a 1-into-2 branching

The geometrical setup for the first comparison consists of a straight channel with a divider that thickens downstream,
leading to a fall in overall cross-sectional area from the mother vessel to the daughter vessels. Setting the channel to
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Fig. 10 Lattice-Boltzmann Simulation with 1-into-2 testcase with symmetric end daughter pressures. (a) Nondimensional inlet profile
u(x = 0) = u0(y) (solid) versus Poiseuille (dotted). (b) Streamlines from LBM computation. (c) Nondimensional pressure at outer
walls (solid) versus pressure on the midline y = 0.5 (dotted). (d) Nondimensional wall shear stress ∂U

∂y at the outer walls

have a length 5 times that of the width of the mother, the nondimensional fluid domain lies in the range 0 � x � 5
and 0 � y � 1 with the outer walls of the channel at y = 0, 1. The divider occupies the region

(y − 1/2)2 <
x − 2.5

100
for x � 2.5. (39)

and a plot of the non-dimensionalised geometry is given in Fig. 10. Within a lattice-Boltzmann framework, this
geometry is modelled as a regular lattice of 501 × 101 nodes with the top and bottom row of nodes representing
no-slip solid boundaries. The divider shape given by (39) is also represented by non-fluid (solid) nodes. Note that
computations have also been attempted on other sized lattices to ensure that the solutions presented are fully grid
independent.

Fluid flow in the lattice-Boltzmann simulation is induced by fixing pressure drops between the upstream entrance
to the mother tube at x = 0 and the downstream ends of the daughter tubes at x = 5. An iterative collision and
streaming process is then repeated many times until the flow field converges to a steady state. During the itera-
tion, the Reynolds number Re = U∗L∗/ν is calculated based on the maximum axial velocity U∗ = max u(x, y)
attained in the flow field, with L∗ as the width of the mother channel and ν as the internal kinematic viscosity of the
lattice-Boltzmann model. This Reynolds number is gradually tuned during the iterations by altering the viscosity ν
to obtain a steady state solution with Re = 200.

Figure 10(a–d) presents some results for a symmetric case where the imposed pressure drops at the downstream
end of both daughters are equal. Figure 10(a) shows the inlet profile generated by the lattice-Boltzmann simulation
in comparison to a Poiseuille profile with the same mass flux. A plot of the streamlines obtained in the computation
can be seen in Fig. 10(b), and Fig. 10(c) shows a plot of the pressures on the lower and upper walls y = 0, 1 and the
midline pressure on the line y = 0.5. Lastly, Fig. 10(d) plots the upper and lower wall shears ∂u

∂y at y = 0 and y = 1.
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Fig. 11 Lattice-Boltzmann Simulation with 1-into-2 testcase with asymmetric end daughter pressures. (a) Nondimensional inlet profile
u(x = 0) = u0(y) (solid) versus a Poiseuille profile (dotted). (b) Streamlines from the LBM computation. (c) Nondimensional pressure
at the lower wall (L) and upper wall (U) and on the midline y = 0.5 (dotted). (d) Nondimensional wall shear stress ∂U

∂y at the lower
wall (L) and upper wall (U)

Notice that there appears to be a degree of upstream influence extending an O(1) distance ahead of the divider,
which raises the pressure in the centre of the channel and diverts the flow into the upper and lower daughters. As the
daughter channels narrow downstream, the wall shear increases sharply and so does the pressure gradient needed
to drive the flow through them.

Compare now the results for an asymmetric case in Fig. 11(a–d) where the pressure drops imposed at the down-
stream ends of both daughters are now unequal. For the case presented, the pressure drop in the upper daughter
is three times that of the pressure drop in the lower daughter, although the Reynolds number remains at 200 as in
the symmetric case. Observe how the asymmetry in the downstream pressures influences the flow much further
upstream, indeed perceptively further than the O(1) distance apparent in the symmetric case above. The significant
difference in the pressure drops in the upper and lower daughters naturally diverts a larger portion of the flow into
the upper daughter, leading to a slowing of flow along the lower wall and an adverse pressure gradient there. This
leads to a drop in the wall shear stress along the lower wall just ahead of the divider. Further downstream however,
the lower wall shear stress quickly recovers to become increasingly attached as the divider thickens. And as one
expects, strongly attached flow is observed along the entire upper wall particularly in the downstream segment
within the daughter vessel.

We can compare the upstream influence observed in the lattice-Boltzmann simulation to that predicted by the
analytical theory of [24], where the upstream pressure difference between the lower and upper walls of the channel
is given by (7) and (8). Taking the log of the pressure difference predicted by the asymptotic theory implies that far
upstream, for x � 2.5,

log
[

p(x, y = 0)− p(x, y = 1)
] = κRe−1/7x + constant (40)
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Fig. 12 LBM 1-into-2
case: Comparison of the log
of the pressure difference
between upper and lower
walls obtained from the
lattice-Boltzmann
simulation (solid line)
against our analytical theory
which predicts a line of
slope κRe−1/7 (dotted line)
upstream of the divider
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The free-interaction parameter κ in this expression depends on certain properties of the incident velocity profile
u0(y) [24]; explicitly it is given by

κ = λ
5/7
0

(
−6Ai′(0)

q

)3/7

, (41)

where λ0 = u′
0(0) and

q =
∫ 1

0
u2

0(y)dy

have been defined earlier. For the asymmetric case, these values are calculated from the lattice-Boltzmann solution to
be λ0 = 1.96 and q = 0.1223. A straight line of the form (40), with a slope determined from these values, is plotted
against the log of pressure difference obtained by the simulation in Fig. 12. Note that there is encouraging agreement
between the asymptotic theory and computation over the majority of the flowfield upstream of the divider despite
the theory being valid only in the limit x → −∞. The discrepancy around x = 0 can be explained by the finite
extent of the computational domain and must occur due to the imposed pressure condition that p(0, 0) = p(0, 1) in
the computation. Close to the divider, the asymptotic expression becomes invalid and the flow pattern alters slightly
as other upstream inviscid mechanisms acting on a shorter scale come into play.

6 Comparison of a 1-into-2-into-4 branching

The second geometrical set-up for the lattice-Boltzmann simulation is a network of vessels branching from one
mother into two daughters, and then into four smaller vessels further downstream; see Fig. 13(a). The nondimen-
sional computational domain is 0 � x � 6 and 0 � y � 1 with no-slip conditions at the outer walls at y = 0 and
y = 1 respectively. A central divider occupies the following region
(

y − 1

2

)2

< min

(
(x − 3)

100
,

3

200

)
for x � 3,

and two further straight thin dividers extend downstream from x = 5 and x = 4.5 in the upper and lower daughter,
respectively. As a result the channel is ultimately split into four vessels of widths (from top to bottom) 0.20, 0.15,
0.18 and 0.16.

Fixed pressure boundary conditions are imposed upstream at x = 0 and downstream at the ends of the four
smaller vessels (at x = 6) to induce a flow, with the viscosity ν tuned once again during the iterative cycle to obtain
a target Reynolds number of 200. For the case shown, the nondimensional pressure is set to p = 0 at x = 0 in the
mother and, at x = 6, the imposed nondimensional end pressures in each vessel are set, in order from top to bottom,
to the values −0.75, −7.5, −3.0, −0.75.
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Fig. 13 Lattice-Boltzmann Simulation with 1-into-2-into-4 testcase with asymmetric end daughter pressures of values (from lower
wall to upper wall) −0.75, −3.0, −7.5 and −0.75. (a) The geometrical setup showing the position of the dividers. (b) Nondimensional
inlet profile u(x = 0) = u0(y) (solid) versus a Poiseuille profile (dotted). (c) Streamlines from LBM computation

Some results for the 1-into-2-into-4 case are presented in Figs. 13 and 14. Note that the incident velocity profile
at x = 0 appears to be approximately Poiseuille again according to Fig. 13(b). As in the asymmetric single bifur-
cation channel in the previous subsection, there is strong evidence in Fig. 14(a–c) of upstream influence extending
beyond an O(1) distance upstream of the central divider. However, notice that the upstream influence in the second
generation of dividers, from daughter vessels to the four granddaughter vessels, exhibits severely abrupt pressure
jumps only occurring within a very short distance ahead of the divider; this is fully in line with the predictions
of the asymptotic theory given in Sect. 3. Examining more closely the upper and lower wall pressures and shear
stresses in Fig. 14(a–c), one can observe that the initial free interaction upstream in the mother steers the majority
of the flow into the upper daughter, leading to a fall in the lower wall shear stress; this recovers, however, as the
central divider thickens downstream ahead of the second generation of dividers. In fact, curiously both daughter
vessel flows become significantly attached on the outer walls upstream of the second generation of dividers where
abrupt pressure jumps violently divert the flow into the more centrally positioned granddaughter vessels. This leads
to a sudden adverse pressure gradient occurring at both upper and lower outer walls causing a sharp drop in wall
shear stress and almost flow separation at the upper wall. Observe though that the flows in the outer granddaughters
appear to rapidly recover within a small distance of the leading edges and revert to a Poiseuille like form which
continues downstream to the edge of the computational domain.
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Fig. 14 Lattice-Boltzmann Simulation with 1-into-2-into-4 testcase with asymmetric end daughter pressures of values (from lower
wall to upper wall) −0.75, −3.0, −7.5 and −0.75. (a) Nondimensional pressure at the lower wall (L) and upper wall (U) and on the
midline y = 0.5 (dotted). (b) The same plot as (a) but focussing on the behaviour ahead of the central divider. (c) Nondimensional wall
shear stress ∂U

∂y at the lower wall (L) and upper wall (U)

Fig. 15 LBM
1-into-2-into-4 case:
Comparison of the log of
the pressure difference
between upper and lower
walls obtained from the
lattice-Boltzmann
simulation (solid line)
against our analytical theory
which predicts a line of
slope κRe−1/7 (dotted line)
upstream of the divider
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A similar comparison to that for the asymmetric single bifurcation case above is shown in Fig. 15. Once again, κ
is calculated by obtaining the values q = 0.0313 and λ0 = 1.0055 from the incident velocity profile obtained in the
lattice-Boltzmann simulation, and a straight line of the form (40) is drawn on the plot against the log of the pressure
difference between the upper and lower walls. Once again, the agreement in the majority of the region upstream
of the central divider is extremely good, with similar discrepancies as in the previous case existing between the
computation and theory around x = 0 and near the start of the central divider that can be explained as above.

7 Further comments and conclusions

Non-symmetries due to the vessel shapes, end pressures or other factors can cause very significant non-symmetrical
responses to propagate in the internal motion throughout the network of vessels, switching the overall flow from
side to side by means of the displacement effect, and there is a correspondingly significant impact on the flow ahead
of the network. The displacement response is much more pronounced in fact than that on the total mass flux in
the current configurations since the induced displacement does not alter the total substantially. The results in the
figures demonstrate that the upstream displacement can be to either side of the original mother vessel, depending
on shapes as well as downstream pressures, and in addition the dependence is rather sensitive. The sensitivity is
seen also in the formulae such as those at the end of Sect. 4 that involve integrated areas and pressure–momentum
contributions supplied by all or part of the network. Although the bias due to non-symmetry is felt throughout the
system, with widely differing mass-flux alterations inside internal vessels being given in effect by the −σ terms in
Sects. 3 and 4, the non-symmetric displacement effects are perhaps most keenly felt near the outer walls. The present
typical network alters the distribution of the incident flux, in essence displacing some fluid that would otherwise go
straight on axially into one or other side of the system.

Among other points stemming immediately from this study, the comparisons between the theory and direct simu-
lations seem affirmative and highly encouraging. They tend to support the view that the flow displacement response
in a large network is broadly but not entirely inviscid. Different types of bifurcation are involved and they need to
communicate, requiring matching particularly via the pressure-jump phenomena occurring at the entrance to almost
every vessel. In each inner vessel an inertial response is found in which conservation of mass and momentum yield
increasing pressure when the gap width decreases, on a local basis, and this determines the mass flux in each such
vessel. All such vessels are virtually independent, except that their end pressures are determined in an upstream-
marching process and communication with neighbouring vessels takes place at each entrance as mentioned above.
In each outer vessel of the system the core motion is parallel to the inner wall (a divider wall), although subject to
an unknown uniform displacement in addition which usually depends on a large section of the network and that
extra displacement itself is uniform only from one bifurcation to the next, i.e., is piecewise constant. The outer
wall layers, however, are viscous and are controlled by the slip generated by the core coupled with the influence
of the outermost wall shapes. Both the extreme and the linearized cases considered in this article suggest a rich
structure and physics arising from the system. In addition, the combination of theoretical analysis and computations
is encouraged.

Concerning nonlinear effects it would be of interest to see the network behaviour when the inner vessels exhibit
nonlinear responses, bearing in mind that the first and the wall-touching branch junctions can be accompanied
by nonlinear viscous wall layers, as is well known. The latter come into play when the outermost end-pressure
differences are of opposite sign but differ in magnitude since then the free interaction upstream of the first branch
junction has to be nonlinear. Moreover, end pressures in the outermost vessels comparable with those taken here for
the inner vessels would almost certainly cause large-scale separation of a kind similar to that reported in [24,33],
near the outermost walls.

Generalizations to allow for incident velocity profiles distinct from the fully developed forms studied here need
hardly be repeated, and likewise for many other follow-on issues. It is worth remarking nonetheless that for a
network containing vessels significantly longer than the present ones, specifically ones of non-dimensional length
comparable with the Reynolds number, the incident-profile generalization certainly matters. As viscous effects fill
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the typical vessel then, they produce new no-slip velocity profiles at the approach to each new bifurcation down-
stream, rather like the even longer-scale situation in the [20] network, except that non-symmetry causes the 1/7
free interaction of Sect. 2 to arise at every such bifurcation then, and this occurs even inside the internal units for
example in contrast with the present configurations addressed in Sects. 3 and 4. A major goal, however, must be to
accommodate three-dimensional networks. Indeed, common needs in virtually all network cases studied thus far are
increased understanding of three-dimensional phenomena eventually and further investigation of full nonlinearity,
as well as following through on ideas on wall flexibility, unsteadiness, and other continuing work. We aim to report
more on three-dimensional branching effects later, concerning non-symmetry and upstream wall shaping. Regarding
the biomedical applications mentioned early on in the paper, the presence of multiple jumps in the flow solutions is
intriguing, for example with respect to the very high local pressure gradients and wall shear stresses thus induced
at almost every vessel entrance in a network; branch junctions are known to be frequent sites of atherogenesis
in general. The high gradients can be coupled with separation and eddies in nonlinear and/or unsteady cases; see
in [22,23]. Finally here, various physical alterations to the network should be modelled, such as adding another
incident feeding vessel (a second mother) to the whole system or cutting off some of the daughters, granddaughters
and even an entire section of the network.
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